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Modeling Video Traffic Using M/Gio
Input Processes: A Compromise
Between Markovian and LRD Models

Marwan M. Krunz and Armand M. Makowski

Abstract—Statistical evidence suggests that the autocorrelation many familiar models such as autoregressive models, Markov
function p(k) (k = 0,1,---) ?O%a CompreSSEd-Vlde? sequence isarrival processes (MAP), and Markov modulated processes
—8vVE e —Blog k . .
better captured by p(k) = ™"V " than by p(k) = k™7 = 775" (¢f, [1], [8], and [23] for surveys). Markovian models exhibit

(long-range dependence) op(k) = ¢~”* (Markovian). A video short-range dependendRD), in that the ACFo(k) (k =
model with such a correlation structure is introduced based on ; . ! . . .
1,2,---) is summable, i.e.X; p(k) < 0o, implying a rapid

the so-called M/Gho input processes. In essence, the M/Gd
process is a stationary version of the busy-server process ofdecay of the ACF for large lags. Note, however, that an
a discrete-time M/G/x queue. By varying G, many forms of SRD model is not necessarily Markovian. The persistence of

time dependence can be displayed, which makes the class ofyaffic correlations and their presence at multiple time scales
M/G/oc input models a good candidate for modeling many types have prompted some researchers to consider insteagt

of correlated traffic in computer networks. For video traffic, .

we derive the appropriate G that gives the desired correlation fange dependen(LRl;)) models. The ACF in LRD models
function p(k) = e~#*. Though not Markovian, this model is drops off slowly _(typlcally as a power fgn_cUon) to the extent
shown to exhibit short-range dependence. Poisson variates ofthat the correlations now have an infinite subly, p(k) =

the M/G/oc model are appropriately transformed to capture the oo, The LRD phenomenon has long been observed in other
marginal distribution of a video sequence. Using the performance 4omains such as hydraulics and economics (see [2] and the

of a real video stream as a reference, we study via simulations - . .
the queueing performance under three video models: our M/Gik references therein). In teletraffic studies, advocates of LRD

model, the fractional ARIMA model [9] (which exhibits LRD), ~argue that such a phenomenon has significant impact on
and the DAR(1) model (which exhibits a Markovian structure). network performance, and thus must be taken into account
Our results indicate that only the M/G/co model is capable when dimensioning network resources. On the other hand,
of cor]S|stentIy providing acceptable predictions of the ag:tual supporters of Markovian modeling, while acknowledging the
queueing performance. Furthermore, only O(n) computations .
are required to generate an M/Gho trace of length n, compared ~Présence of S_U(_:h a p_h(?nomen_on, argue that for n_etworks with
to O(n?) for an F-ARIMA trace. finite buffers it is sufficient to incorporate correlations up to

Index Terms—Correlated variates, M/G/oc process, traffic some finite lag that is proportional to the buffer size [12],
modeling, VBR video. [10], [29].

As indicated above, the key difference between these two
modeling approaches lies in the asymptotic behavior of the
ACF: Markovian models give rise to an ACF of the form

ECENT indications of persistent correlations in varioug(k) ~ ¢~ %* (3>0), whereas in LRD models we find
types of network traffic (including Ethernet LAN [7], p(k) ~ k=% = ¢=Plgk (3>0), which drops off much
[19], WAN [28], and variable-bite-rate (VBR) video traffic slower than its Markovian counterpart. These ACF'’s represent
[2], [9]) have spurred an ongoing debate on the relevancetafo extremes, between which other forms can be envisioned,
these correlations to the dimensioning of network resources.least in principle. More generally, the ACF can have the

While there is a general agreement on the importance of traffieneral representatiop(k) ~ ¢ (*) for some monotone
correlations, researchers tend to disagree on how muchf@fction f: N — R, which increases no slower thaog k
them should be incorporated in a traffic model. Conventionglit no faster thark.

traffic models are Markovian in nature, with an autocorrelation The challenge for the traffic modeler is to identify a class of
function (ACF) that drops off exponentially. They includestochastic processes that can display forms of correlations as
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fact, the M/Gto process was first mentioned by Cox [3] as II. M/G/oo INPUT PROCESSES

an example of a process exhibiting LRD (which occurs when |, s section, we formally introduce the class of MG/
G is a Pareto distribution). Second, the M&/model arises processes, and summarize some of their properties as they

naturally in teletraffic as the limiting case for the aggregatiqy|ate to our modeling efforts: additional information can be
of on/off sources [20]. Third, queueing performance for thegg ng in [24] and [26].

processes is sometimes feasible, as demonstrated in [4], [27],
[26], and [21]. Finally, when their queueing analysis in not
tractable (as in the case of the video model presented in ths Stationary M/Gfo Input Processes

paper), the computational complexity for generating SynthetlcConsider a discrete-time system with an infinite number of

M/G/cc traces is onlyO(n), with n being the trace length. servers. During time sldfin, n + 1) (n = 0,1,++), &y 41 NEW

This low complexity allows for fast generation of these tracecsustomers arrive into the system. Customer= 1. - - . &
to be used in network simulations. Y ) DOr= "+ enta,

In this paper, we investigate the use of MiG/rocesses is presented to its own server, which begins its service by the

in modeling VBR compressed video streams. We start gtart of slot[n +1,n 4 2), with a service timeoy 1 ; (in
mber of slots). Leb,, denote the number of busy servers

reexamining the empirical ACF. of fogr VBR video Sequences, equivalently, the number of customers present in the system
which were generated by various video encoders. Stat'St'%?;Ihe beginning of ime sldt, n-+1), with b being the initi
. . ) , , 0 g the initial
evidence suggests that the empirical ACF is better Capturr?umber of customers present in the system. It is assumed
by p(k) ~ =*V¥ than by p(k) ~ k=7 = ¢=7°&* (LRD) or that the N-valued random variables (rv’s) {'5
; : - yen+1, M =
p(k) ~ e¢~P* (Markovian), where is the lag between frames. 0 1Sn+l

. . . . Oala"' ’ an,"an:1a2a"';j:1a2a"' aand 007,',j:
Accordingly, we introduce an W&-based wdgo model with 1727___{ iatisjfy the following assumptio]r}s: 1) ';{heyj are mu-
an ACF of the formp(k) ~ ¢=7VE. We determine the appro- a1y independent; 2(¢ny1,n =0,1,--} are i.i.d. Poisson
priate that provides such an ACF. Although non-MarkowanN,S with parametes > 0; 3) {on j,n =1,---:5 = 1,2, .-}

’ n,J — 4 9 — Ly &y

this model is SRD. The variates in the basic MiGprocess . iid. rv’s with common pmi7 on {1,2,---}. Let o be

are Poisson distributed. To capture the frame-size dismb”tiﬁngenericN-valued rv distributed according to the prof;

of a real video sequence, the Poisson marginal distribution se ;me thatZ[s] < co. Then, the M/Géo input process is
transformed into a hybrid Gamma/Pareto distribution, in ”nﬁmply the busy-server proc'eéé n=01,-}

with the findings in [9]. This nonlinear transformationis shown 57, — 071 ... et #” denote theN"*l-valued rv

to have negligible impact on the original correlation structur%b0 bi,---,by). The fact that the M/Gk process{b,,n =
As a means of validating the appropriateness of our IWG/O’ 1,---} exhibits some form of positive dependence is indi-
model, we study its queueing performance via simulatio%ted by the following result [27].

and contrast it to two previously proposed video models: thepronqsition 1: For any choice of the initial condition rv
F-ARIMA model [9] (an LRD model) and the discrete auy, and of the service timegoo,¢ = 1,2,---}, the rv's
toregressive of order one model (DAR(1)) [14] (a Markovia?bmn —0,1,--} are associated in the following sense: For

model). Using the queueing performance for the real vid%q]yn — 0,1,---, and any pair of nondecreasing mappings
streams as a reference point, we evaluate the performa?cg; N+ — R. it holds that

for the three models with respect to two measures: the céll

loss rate due to buffer overflow and the frame error rate.

The main conclusions drawn from our study are that 1) the

M/G/oc model provides acceptable performance predictions | i _ .

over a wide spectrum of traffic loads; 2) the performance Bfovided the expectations exist and are finite.

the F-ARIMA model is overly sensitive to the size of the From (1), we already conclude that

buffer, which causes it in certain cases to underestimate the

actual performance by several orders of magnitude; and 3) the cov [bp, bpgr] 2 0, nyk=0,1,---. (2)

DAR(1) model provides very good performance predictions at

heavy loads, but performs poorly at light loads. The adequatie notion ofassociationused above was introduced in [5],

of the M/Gho video model is justified by the fact that itand has been found useful in many contexts when formalizing

attempts to capture both short-term and long-term correlatiotise idea ofpositive dependence.

hence combining the goodness of Markovian models at smallThus far, no additional assumptions are made on the rv's

lags with that of LRD models at large lags. It is a compromisgrg ;,7 = 1,2,---}, which represent the service durations

that incorporates the benefits of the two competing paradignes.the b, customers initially present in the system. Various
The rest of the paper is structured as follows. In Section $kenarios can, in principle, be accommodated. If the initial

we give an overview of M/Gk input processes. In Section Il customers start their service at time = 0, then it is

we present the fitting results for the ACF’s of four vide@ppropriate to assume that the rn{s¢ ;,7 = 1,2,---} are

sequences. The M/Gé-based video model is introduced inalso i.i.d. rv’'s with common pmi&. On the other hand, if

Section IV. Issues related to generating synthetic M{G/ we take the viewpoint that the system has been in operation

traces are discussed in Section V. In Section VI we presdot some time, then these rvgso ;,7 = 1,2,---} may be

simulations of the queueing performance under the three vidaterpreted as the residual work (expressed in time slots) that

models. Section VIl concludes the paper. the by “initial” customers require from their respective servers

E[f(b")g(b")] = E[f(b")1E[g(b™)] 1)
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TABLE |
SUMMARY OF THE FOUR VBR TRACES USED IN THE STUDY
Movie Source Trace Length (frames) | Compression Scheme
Star Wars M. Garrett [9] 174,000 DCT (intra-coding)
Beauty and the Beast | W. Feng [6] 143,442 JPEG
Crocodile Dundee W. Feng [6] 168,565 JPEG
Wizard of Oz M. Krunz [18] 12,600 MPEG-2 (I sequence)

before service is completed. In general, the statistics of tBe Correlation Properties of M/&G& Input Processes
v's {ao,;,j = 1,2,---} cannot be specified in any meaningful \ve note from (6) that
way, except for the situation when the system is in steady state.
Although the busy server proceg$,,n = 0,1,---} is - T
. ’ . v o . Lky=A» Pllc—k 1
in generalnot a (strictly) stationary process, it does admit (k) ; [(0 ) >L]
a stationary and ergodic version. The existence of this sta- o

tionary regime emerges very naturally through the following :)\ZP[U >k + 1]
proposition. We use> to indicate weak convergence. i=0

Proposition 2: There exists a stationary and ergodi¢ oo
valued procesgbs,n = 0,1,---} such that =A Z Plo > 1]

i=k+1
{bn-f—kvn:0717"'}:>{b27n:0717"'} ask — oo (3) I)\E[O’] i P[&IL]
i=k+1

for any choice of the initial condition ry and of the service :)\E[a]P[c}+> K] E—=0.1.... 7)

times {09 ;.7 = 1,2,---}.
This stationary versiofb’,n = 0, 1, - - -} admits an explicit Thus, the ACF for an M/Gk process is given by

construction, which corresponds to takingb})to be Poisson A T(k)

distributed with parametekE[c]; 2) {00 ;,5 = 1,2,---} to p(k) = == = P[5 > k], k=01, (8)
be i.i.d. rv's distributed according to thferward recurrence I'(0)

time & associated witly. The pmf of 5 is given by since I'(0) = ME[s] by (6). By varying G, the process

{b7,n = 0,1,---} can display various forms of positive
) autocorrelations, the extent of which is controlled by the tail
behavior ofG.
To close this section, we point out that the procggs n =
Based on the above construction, several useful propertiesnof, - - -} can induceboth SRD and LRD behaviors. From (8),

the stationary versiogb’,n = 0,1,---} are readily obtained it follows readily [27] that

A Plo > 7]

Pl6 =] Elo]

r=1,2--.

[24]. oo

Proposition 3: The stationary and ergodic versi¢:, n = Zl“(k) = \E[0]|E[6] = éE[a(a +1)] (9)
0,1,---} of the busy-server process has the following prop- b0 2
erties.

. . . whence
1) For eachn = 0,1,---, the rv &} is a Poisson rv with - E[ 2]
parameteriE[s]. k) = E[6] = 1 + ol 10
2) It holds that kz::()p (k) = B0] =5+ 550 (10)

1 & Consequently, the procedd’,n = 0,1,---} is LRD (re-
lim sz = AE[s] as. (5) spectively, SRD)f and only if E[¢?] is infinite (respectively,
noeen 4 1= finite). In particular, the M/Gk input traffic will be LRD
when G is Pareto, with a shape parameter in the interval
3) The covariance structure ¢bx,n = 0,1,---} is given (1, 2) [3].
by

I1l. CORRELATION STRUCTURE OFVBR VIDEO SOURCES

L(k) =cov [, b 44] = AE[(0 = k)], In our study, we examined four public-domain VBR video
nk=0,1,---. (6) traces (Table 1). These traces were generated using three
different encoding mechanisms (see references for further
Henceforth, by an M/Gt input process, we mean itsdetails). Each trace represents an integer-valued sequence of
stationary version {%,,n» = 0,1,---}, as described above.number of cells per frame for a given movie.
This stationary process, which is fully characterized by the While a model is expected to capture some statistical
pair (A, G), will be used here as the basis for traffic modelingproperties of the underlying empirical data, its goodness is
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Fig. 1. Fitting the autocorrelation function of VBR video sequences.

ultimately determined based on its ability to achieve the The ACF’s for the four traces are shown in Fig. 1. Each
goal it was designed for. In teletraffic studies, the goal @mpirical ACF was fitted by three functions: Ajk) = ¢=%*

a model is to predict accurately network performance f@Markovian), 2)p(k) = k=7 (LRD), and 3)p(k) = ¢=#V*.

the purpose of dimensioning network resources. Thus, tiike last fit was chosen because its drop-off behavior is similar
queueing performance is the crucial factor that determines tlaethat of the empirical ACF (but other forms are also possible).
appropriateness of a traffic model. Since traffic correlatiof®r fits 1) and 3)/3 is obtained by least-square fitting. For the
are known to have a profound impact on queueing behavitRD fit of Star Warstrace, 3 = 0.4 was obtained from the
preliminary indications of the goodness of a model can lestimated value of the Hurst parametdd = 1 — /2 =
obtained by examining its correlation structure. 0.8), which was reported in [9]. For the other traces, the
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(Continued.)Fitting the autocorrelation function of VBR video sequences.

Hurst parameter was estimated by several methods, includawgen beyond. Only at very large lags, the LRD fit becomes
variance-time plots, R/S analysis, and Whittle’s approximaticatceptable. In contrast, the choipék) = e=BVE provides
(see [2] and [31] for a discussion of these tests). In thevery good fit at both small and large lags, particularly for
interest of brevity, we only display the estimated values fahe first three traces. Note that using a larger value Hor

the various parameters in Fig. 1. Clearly, the Markovian fitould not improve the LRD fit, sincé—° always drops off
drops off much faster than the real ACF, so it only capturdast and then maintains almost a flat appearance. Hence, it
the short-term correlations. The LRD fit is not adequate eithalways underestimates the correlations up to some lag, and
since it underestimates the correlations at lags 1-1000, anarestimates them beyond that lag.
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IV. M/G/oo-BASED MODEL FOR VIDEO TRAFFIC and (13) then imposedimy_... p(k) = 0. A moment of
As indicated in Fig. 1, the ACF of a video sequence ieflection readily yields the following invertibility result.
adequately captured by' Proposition 4: An R, -valued sequence{p(k),k =

0,1,---} is the autocorrelation function of the stationary

M/G/oc  process with integrables if and only the

corresponding mappingt — p(k) is decreasing and

integer-convex withp(0) = 1> p(1) and limy ... p(k) = 0,

for some constanpt>0. A model with such an ACF can jn which case the pmé of o is given by (14).

be constructed using M/G¢ input processes. In teletraffic pifferencing (14) yields the pmf of

modeling studies, a common practice is to try to capture

the first two moments, the autocorrelation structure, and the K = p(k—1) = 2p(k) + p(k+ 1)

general shape of the marginal distribution. More recently, 1—p(1) ’

researchers have realized the importance of capturing the k=1,2,---. (16)

tail of the marginal distribution (e.g., [9], [10], [22]), which

is especially important for computing the buffer overflow The mappings — ¢~V is decreasing and convex &y,

probability at a multiplexer. so that the sequende — e Vh s automatically decreasing
The parameters of the M/&/ process that can be used irand integer-convex oi. Proposition 4 can thus be applied to

the fitting are the service distributio® and the arrival rate the correlation sequence (11). Upon substitution into (13) and

A. While G can be chosen to provide a given autocorrelatidd6), we find that the desired pmf fer is simply

p(/%) = 67’8\/%7 k= 07 17 27 e (11)

Plo =

structure [via (6)], the arrival rata can only be fitted to one e~ OVE=T _ 9,—pVE | —OVR+FL
moment (mean or variance). To capture the complete marginal Plo =k] = 1_ o7 )
distribution (including the mean and variance) as well as the E=1.2 ... 17)

correlation structure, we proceed in two steps. First, we choose , . . . L

G in the M/Gho model that provides the target ACF. Then, w@nd Its mean service time is given by

identify a pointwise transformation that transforms the Poisson B _g -1

marginal distribution of the original M/G6 process into a Elo] = (1 - ) ' (18)
more appropriate distribution. These steps are described nextrpa value off3 used in (17) and (18) is obtained by fitting

the empirical ACF. It might be suggested that in determining
A. Modeling the Correlation Structure the pmf of o, the empirical ACF be used directly in (16)
We seek the pmé& which results in a correlation sequencd?Stead of an analytical fit. However, the empirical ACH&
of the form (11). To that end, we note from Proposition 3 arfdways monotone, and thus there isagriori guarantee that

(8) that the correlation structure of the stationary MiGihput Flo = 4 2 0in (14) for allk = 1,2, .. _
process (which is parameterized Byand G) is completely To conclude, we observe by an elementary comparison that

determined by the pmf of (thus of o). It turns out that the i i e v
inverse is also true, as we now show. Zp(k) =1+ ZC_’ <1 +/ e” Y de
Indeed, ifp(k),k = 0,1,---, is the ACF of the stationary k=0 k=1 0
M/G/oo input procesg A, &), then (4) and (8) together imply =14 2 < o0 (19)
B2
EY—plk+1)=Plo>kl-Plo>k+1
p(k) = plk +1) [(f > H] o>k +1] and the correlation structure (11) indeed gives rise to an SRD
=Po=k+1] model.
=L posk, k=01, (12
Elo] B. Modeling the Marginal Distribution

so that the mapping — p(k) is necessarily decreasing and By Proposition 3, the M/Gb model produces correlated
integer-convex. Taking into account the fagt®) = 1 and variates with a Poisson marginal distributi®ioisson, Whose
P[o > 0] = 1, we conclude from (12) (wittk = 0) that tail drops faster than that of the empirical distribution of a real
video sequence. This is illustrated in Fig. 2 for tBtar Wars

-1 _

Elo]™ =1-p(1) (13) sequence where the parameter of the Poisson distribution (of
with p(1) < 1 necessarily by the finiteness BYs]. Combining the M/Ghc fif) is obtained by matching the sample mean to
(12) and (13) we find that AE[o], and settingk accordingly[E[o] is estimated from the

empirical ACF via (18)]. Indeed, the sample mean provides
Plo>k = p(k) — p(k + 1)7 k=01, (14) 2 natural estimate oAE[o] owiqg to the ergpdic pro.pert.y
1—p(1) (5) of M/G/oc processes. The tail of the marginal distribution
Note also from (14) that plays an important _role in determining the buffer overflpw
probability at a multiplexer [10]. Hence, we need to provide
o0 1-— klim p(k) a better fit to the empirical tail than the Poisson fit. To do
Elo] =Y Plo>kl= — == —— (15) that, we transform the Poisson distribution of the MG/
— 1—p(1) . ) o .
k=0 process into a more appropriate distribution. The key idea
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Fig. 2. Complementary frame-size distribution for tBear Warstrace along with several fits.

here resides in the following well-known observation. Faused to capture the general shape of the empirical distribution,
a frame-size distributionF, a transformationf: R — R whereas the Pareto distribution is used to capture the tail of the
can always be constructed so that if tRevalued rv X is empirical distribution. LetFr and F» denote the cumulative
distributed according to some distributiol, then theR- probability functions for the Gamma and Pareto distributions,
valued rvY = T(X) is distributed according td". Indeed, respectively. AlthoughfT has no closed-form expression, its

it suffices to take derivative is given simply by
A _ s
T(.’L’) = F 1(H(-T)), z €R (20) fl"(x) — 1:‘; )xs—le—waz’ r>0 (23)
S

where F~! denotes the (generalized) inverse fof
The program is now clear. Consider a (stationary) MG/ where the parametets> 0 andw > 0 are the shape and scale

process{b’.n = 0,1, --} characterized by the paip\, G). parameters, respectively, and the standard Gamma function

The common distributiorf of these variates is Poisson Withr(s) is given by
parameter E[s]. For any frame-size distributioR, define the A [
_ I'(s) = e dr 5>0. (24)
transformed proces$a,,,n = 0,1,---} as o )
an 2 THX) = F7HHE)) = FH(Froisson(83)), The Pareto distribution we use has the explicit form
n=1,2---. (21) ae
Fp(x) = {1 (7)) feza (25)
For eachn = 0,1,---, the rva, will be distributed according 0 if x<a

to F. In fact, the transformed proce$s,,,n = 0,1,---}is still  with parametersy >0 anda >0 which are both determined
stationary and ergodic. In general, the covariance Structuggs fitting.

of the two processes wilhot be exactly the same. The best The hybrid Gamma/Pareto distributidft- /p is then given
one may hope for is that these covariance structures He

approximately equal, i.e., )
Ir(z) ifz<a*

COV [y an] = cov [Bipn U], mk= 0,1, (22) Fryp(e) = {Fp(g;) if o> 2" (26)

Next, we need to select an appropriate distributiBn for somez* >0. As in [9], the parameters of the Gamma
Several theoretical fits have been suggested for the frandéstribution are obtained by matching the first and second
size distribution of a video sequence, including Gamma [14homents of the empirical sequence to those of a Gamma rv.
log-normal [13], [17], and hybrid Gamma/Pareto distributions Once the Gamma part is fitted? can be estimated graph-
[9]. The last fit was found quite appropriate f&tar Wars ically by inspecting the tail of the empirical distribution, and
data. Accordingly, we use it here to model the frame-sizietermining where it starts to deviate from the tail of the
distribution. As explained in [9], the Gamma distribution i$samma fit (Fig. 2). Using the continuity conditidi-(z*) =
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TABLE I
ESTIMATED VALUES OF VARIOUS PARAMETERS IN THE HYBRID GAMMA /PARETO MODEL
Trace Mean | Std. Dev. w s * a o
(cells) (cells) (1/cells) (cells) | (cells)
Star Wars 579.5 130.3 3.41E-2 | 19.78 650 576 10.7

Beauty & Beast | 264.3 74.6 4.75E-2 | 12.55 | 398 215 | 531
Crocodile Dundee | 225.0 48.7 9.50E-2 | 214 355 224 | 10.1

Star Wars

1 T T T T T T T T T

e—0.076‘\/k_ s

0.7+ — — — — ACF of transformed realizations 1

Q o
(4] [«
T T

Autocorrelation
o
F-N

T

1 1 1 L 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Lag (in frames)

Fig. 3. Impact of transformation on the autocorrelation structure.

LFp(2*) along with least-square fitting of the Pareto taildifferent from their empirical counterparts. For example, the

estimates ofe and « can be obtained. Table Il gives themean frame size in a synthetic trace is given by

estimated parameters for three traces (frame sizes are in 48-

byte cells). Since the fourth video trace is relatively short, [ =

accurate fitting of its extreme tail is not possible. Elan] _/0 wfr(@)de + /w fr(z)de (29)
Thus, we select” = Iy, p, and the Poisson variates of the - o

M/G/oo process can now be transformed into Gamma/Pard¥bile the empirical mean is fitted f5° « fr(z) dz. However,

variates. Let{s*,n = 0,1,---} denote the M/Gk process this slight discrepancy is of no significance.

with A = 1 and service time distribution (17), so that AS pointed out above, this transformation does not, in
its correlation structure is given by (11). The Sequen(ggneral, preserve the original correlation structure. However,
{b*.n = 0,1,---} is transformed into a new sequencdn all our experiments, the effect of transformation was barely

noticeable. An example of the average ACF of transformed

M/G/oc traces is shown in Fig. 3 based @tar Warsfit-

ay, = F;/}(Fpoisson(b;)), n=12--- (27) ting. The average ACF is almost indistinguishable from the
theoretical ACF of the nontransformed MAs/process.

{ap,n=0,1,---} through the transformation

where I'poisson 1S the cumulative probability function of a

Poisson rv with parametdt[s] [given by (18)] and V. SYNTHETIC TRACE GENERATION

F;l(u) =a/(1—y)/e AND COMPUTATIONAL ISSUES
Fr_/lp(y) = if y>Fp(z*)=1-(afz*)* Ideally, we would like to analytically determine the queue-
Fi(y) otherwise ing performance for a traffic model so that control deci-

(28) sions related to call admission and resource allocation can

be done on-line. However, there is a natural tradeoff between

with Fi- ! obtained numerically. the complexity of a model and the relative accuracy of its
Since only the Gamma part is used in fitting the meajqueueing predictions. A detailed video model, such as the
and variance, the mean and varianceaqf will be slightly one considered in this paper, does not easily lend itself to
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Fig. 4. Autocorrelation function of the F-ARIMA model.

gueueing analysis, but can be used to drive network simesnsists of 1 million data points, while each F-ARIMA trace
lations. Performance evaluation by means of simulations densists of 500 000 data points (a data point corresponds to a
useful in off-line dimensioning problems (e.g., buffer sizindrame size measured in cells). The F-ARIMA traces are shorter
under a fixed quality of service). The simulation time cathan their M/GAc and DAR(1) counterparts since generat-
sometimes be reduced by employing certain problem-specifig F-ARIMA traces of length 1 million is computationally
techniques (some of which are discussed in the next s@cehibitive. More specifically, it require®(n?) computations
tion). Separating the issue of model construction from th&i generate an F-ARIMA trace of length using Hosking's
of queueing tractability allows highly accurate models to balgorithm [15] (before transformation). In contrast, both the
developed. It should also be mentioned that models wilWG/cc and DAR(1) models require onk?(n) computations
analytically tractable performance are not always usable er trace. To generate an F-ARIMA trace of only 100000
on-line traffic control problems, particularly when extensivpoints using Hosking’s algorithm, it took about three days of
numerical computations are needed to obtain the resukgecution on a Sparc-10 workstation. To generate 500 000-long
While network simulations can be driven by “real” data, such-ARIMA traces, we used an approximation due to Haslett and
data sets are often not available or very difficult to obtaifRaftery [11], which was incorporated in the S-Plus package.
A stochastic model, on the other hand, encompasses m&wen with this approximation, it took about two days to obtain
realizations that represent independent yet structurally” similane 500 000-long F-ARIMA trace, compared to less than one
(i.e., homogeneous) streams, which are ideal for statistigainute for a 1 million long M/G#o or DAR(1) trace. Extensive
multiplexing studies. simulations based on the three models were conducted. For
brevity, we show the results for one real trace (8tar War$

A. Simulation Models and its corresponding models.

To verify the appropriateness of the MKsfbased model,
we investigate its queueing performance and contrast it Wﬁ‘\ F-ARIMA and DAR(1) Models
the performance of two popular video models: the F-ARIMA The F-ARIMA model [9] used here is constructed by trans-
model [9] (which exhibits LRD), and the DAR(1) model [14]forming a fractional ARIMA process with a standard normal
(which exhibits a Markovian structure). By a suitable trangnarginal distribution into one with a hybrid Gamma/Pareto
formation, we ensure that all models share the same hybéigtribution. An example of the sample ACF of a synthetic
Gamma/Pareto marginal distribution, thereby eliminating tHfeARIMA realization for the Star Warstrace is shown in
impact of the marginal frame-size distribution. In all thre&ig. 4.
models, the hybrid Gamma/Pareto distribution is discretizedThe theoretical ACF of an F-ARIMA process is given by
to obtain integer-valued frame sizes.

Synthetic realizations from the three video models were (k) = dl+d)---(k—1+4d)
generated and used in the queueing simulations described in (1-d)2-d)---(k—d)’
the next section. Each of the M/&/ and DAR(1) traces k=1,2,---, 0<d<0.5 (30)
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which behaves ag~" only asymptotically(d = H — 1/2). A : .
In fact, the ACF of the F-ARIMA model l(mderestima/tel the’ ; Felsson rv with mean A =1 (batch size)
short-term correlations of the real data even more #rah 7~ 7 with distribution G given in (16)
We have transformed the normally distributed variates oX (k] = kth value in the resulting trace (number of busy servers)
the standard F-ARIMA model into Gamma/Pareto variates: 2 trace length
Here, as with the M/Gk-based model, inspection of Fig. 4 for i =1 to n do
suggests that the transformation has almost no impact on the Set X[i] := 0 /* initialize counters */
correlation structure of the original F-ARIMA process. This i€2d for
in keeping with the work in [16] where, under mild conditions, fori=1tondo

. - ..~ generate batch size: A ~ Poisson()\)
a transformed LRD Gaussian process is shown to maintain its = ¢ i=1toAdo

Hurst value. generate a service time: o ~ G
The DAR(1) model is obtained as follows [1]. LEV,,,n = fork=1too
0,1,---}and{U,,n =0,1,---} be two mutually independent increment counter: X[i + k] = X[i + k] +1
processes of i.i.d. rv's. Fon = 0,1,---, the rv V,, is end for
Bernoulli with P[V,, = 1] = 1 - P[V,, = 0] = r, and end for
the rv U,, is an N-valued rv distributed according to theend for
pmf 7r(L) 2 P[Un = L]M = 0,1,---. A DAR(1) process Fig.5. Sequential algorithm for generating an Mf&kynthetic trace.

{X,,n =0,1,---} is defined through the recursion
independent of., the complexity isO(n). The computational

Xy = VaXp1 + (1= Vo)Up, n=12---  (31) complexity for the generation of DAR(1) traces is al§¢n)
(see [14] for details on how to generate DAR(1) traces).
with given Xy. The sequence{X,,n = 0,1,---} is We note that due to the correlated nature of cell losses,
a Markov chain with the same marginal distribution aextremely long traces are needed to obtain meaningful results
7 = (7(0),#(1),---,), i.e.,, P[X,, =] = w(¥),« = 0,1,---, under small cell loss probabilities. In fact, we first tried using

and with an ACF of the formp, = +*, similar to that of the shorter traces of length 100000, and found that for realistic
familiar AR(1) process. In [14], the DAR(1) model was used ttoss rates, losses occur in only few frames, e.g., in one
characterize video-teleconferencing streams, with the margipalticular experiment, a loss rate of 8.3E-6 (484 cells) came
distribution taken as a negative binomial distribution—th&om five errored frames only. Intuitively, correlations make it

discrete analog of a Gamma distribution. Here, instead, weore likely that large frames follow each other, thus causing
use a hybrid Gamma/Pareto marginal distribution, consistartrrelated periods of buffer overflow. Moreover, 100 000-long
with our choice for the other two models examined in theealizations may not be long enough to display the extreme tail

paper. of the frame-size distribution, causing the loss performance
to be underestimated. For example, the maximum frame size
C. Generation of M/Gk Traces in the Star Warstrace is 894 cells. In order to display this

_ . value in a transformed M/G¢ trace, the corresponding value
A CSIM progrant was written to generate synthetic MAS/ before transformation is 33. i.ef~ (Froisson(33)) = 894.

traces. The program simulates an MiGueue with infinite An M/G/>o trace before transformation is a realizationsof

servers. Time is slotted in frame periods. At the start of a _t'n?ﬁentically distributed rv'sit, * which are associated

Tty Uno

slot, a batch of arrivals is generated according to a PO'SS@}oposition 1). By the well-known properties of associated
distribution with A = 1. Each arrival is kept for a randomrv,S [5], we have

time o whose pmf is given by (17). A synthetic M/&/ trace
is obtained from the number of remaining customers at the n
beginning of each time slot. This trace is then transformed PLZI?E}X” b?>$} <1- HP[5?<$]
into one with a Gamma/Pareto marginal distribution. o i=1
The computational complexity for generating an MiG/ =1— Fpoisson(®)”,  w€R. (32
trace of length (before transforming the marginals)@¥n). i
To show that, we provide a sequential version of our CSININUS, forn = 100000, we find that
program, which is shown in Fig. 5. There are three nested
“for” loops in this algorithm. In each iteration of the outermost P{
loop, a batch of Poisson arrivals is generated. A service time
is obtained for each customer in the batch (the second “for”

loop). Finally, the effect of the service time of a customer is

. 0 )
incorporated in the innermost loop by incrementing the valuk§ there is less than a 50% chance that the 100000-long

of busy servers in future time slots during which a c:ustomerrigallzatlon reaches the real maximum frame size.

being served. It is easy to see that theeragecomplexity of
the algorithm isO(n\E[o]). Since A and E[s] are fixed and VI. QUEUEING PERFORMANCE
To verify the appropriateness of the M&s/ model, we
1CSIM is a C-based discrete-event simulation language [30]. investigate its queueing performance and compare it to the

27"

_max bF > 32} <1 — (Froisson )(32))1° %0 = 0.4745
(33)
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performance of the F-ARIMA and DAR(1) video models. Fodepicted results for the three models represent the averages of
brevity, we show the results for one real trace (Btar War$ ten independent runs.
and its corresponding video models. The queueing systenfFor U = 80% and 60%, the buffer size is varied from 100
consists of a single-server FIFO queue with capaéityin to 2500 cells. As expected, CLR and FER for a real stream are
cells) and constant release rate (cells/slot). Two types of quite high atU = 80%. Adding extra buffer barely provides
simulations were conducted. The first is for a single streaamy improvement in performance. In contrast, reducing the
(i.e., no multiplexing), which is used to contrast the perfotead from 80% to 60% (i.e., increasing bandwidth by 33%)
mance of the three models with reference to the performariogproves the CLR by about an order of magnitude. The buffer
under the real trace. It is expected that discrepancies in #iee seems to have a bigger impact on the FER than on the
buffer overflow behavior are most apparent in the singl€LR. At bothU = 80% andU = 60%, the FER for the real
stream case. In the second type of simulations, we investigateeam decreases by about 50% wiliis increased from 100
the performance for several statistically multiplexed streants. 2500 cells.
Obtaining the performance for real video streams in this caseContrasting the performances under the three models with
raises a fundamental challenge: since no two real traces exhibference to the performance under the real stream, we observe
the same statistical structure (due to differences in scethe following: In the heavy-load regime, both MKs/and
dynamics), in principle one cannot obtain the multiplexin@AR(1) models provide acceptable predictions of CLR and
performance for independersind homogeneous real videoFER, with DAR(1) being slightly more accurate. Under the
streams. Possible approximate approaches that can be Us@dRIMA model, the performance is overly sensitive to the
for this purpose include the following. buffer size, to the extent that it underestimates the actual CLR
. e . . F\nd FER by orders of magnitude whéh is large. This is
1) Obtain multiple “real” streams from a single empirical - .
. X . . clearly a consequence of not sufficiently capturing the short-
trace by arranging the trace as a circular list, startlr} ) . )
. . i rm correlations. Going to the moderate-load regime, we
each stream at a random location in this list, an .
. . . . . serve that once again both Mis/and DAR(1) models
proceeding sequentially until the circle is complete . L -
[14]. The problem with this approach is that the resultin rovide significantly more accurate predictions of CLR and
) ER than the F-ARIMA model. In this regime, DAR(1) and

treams areot in ndent, particularly if the startin . . .
streams arao d_epe dent, particularly € s gM/G/oo models give comparable results (particularly, with
times are not sufficiently separated.

respect to the CLR measure).

2) Multiplex traces of different movies. Since traces typ- Interestingly, in the light-load regimél’ = 40%), the

ically differ in their statistical properties (e.g., mean . .
4 . : brop (e.g .~ DAR(1) model is no more capable of providing acceptable
variance, etc.), multiplexing them amounts to multiplex- - i
rformance predictions. In fact, no losses were observed in

, . . e
ing heterogeneous streams. This works well if we afe . . .
only interested in the heterogeneous case. However, i of the DAR(1) simulations (although ten independent

are also interested in the homogeneous case which gifﬁ ulations were u;ed, each Wi.th a_l miII.ion long trace). The
us a better understanding of the multiplexing gain an /oo.mOQeI 's quite acggrate in this reégime. The F-ARIMA
model is still overly sensitive to the buffer size, although the

the averageloss performance that individual streams : .
will experience. gap between its 'performance and the real performanpe is now
smaller (whenB is small the F-ARIMA model overestimates
While neither approach is completely satisfactory, unfortGLR and FER, but ag3 increases the model starts to under-
nately one has no other alternatives. We opted for a modifiegtimate both performance measures). The main conclusion to
version of the first approach, whereby the starting times ase drawn from Table Il is thaof the three examined models,
chosen to be maximally separated (to reduce the potentaly the M /G/cc model is observed to consistently provide
dependence between the multiplexed streams). Furthermaiegeptable performance predictions at various traffic loads
we limit our study of the performance under real streams The performance of the M/Gé is always within an order
the case of five multiplexed streams, so that streams’ startisgmagnitude of the real performance. The capability of the
points are sufficiently distanced from each other. Of course, MIG/oc model of providing acceptable results can be attributed
such restriction is necessary when studying the multiplexing the fact that it incorporates the good aspects of Markovian
performance under a traffic model. In all experiments, wend LRD models. Similar to Markov models, it incorporates
assume that cells in each frame are evenly distributed over the short-term correlations; and similar to LRD models, it
frame duration. Two measures of performance are consideredptures the slowly decaying nature of the correlation structure
the cell loss rate, and the frame error rate. A frame is errorefla VBR video sequence.
when one or more of its cells are lost. This measure is impor-The M/Gho model slightly underestimates the actual queue-
tant for applications that do not implement error concealmeinly performance, particularly at intermediate loss rates (i.e.,
mechanisms for recovery from partial frame losses. 1.0E-3-1.0E-4) and large buffer sizes. An examination of the
real trace reveals that much of the discrepancy is related
to some “nonstationarity” in the real data, which is not
The cell loss rate (CLR) and the frame error rate (FERIccounted for in the M/Gb model. In particular, the first
are examined at three loads: = 80% (heavy load),60% and last few thousand frames of tlar Warstrace exhibit
(moderate load), anth% (light load). A summary of the simu- stronger statistical correlations than the rest of the trace. We
lation results to two significant digits is given in Table 1ll. Thespeculate these frames correspond to the compressed frames

A. Single Stream
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TABLE 1l
AVERAGE CELL Loss AND FRAME ERROR RATES AT THREE DIFFERENT LOADS (Star WarsTRACE). TEN INDEPENDENT
REPLICATIONS ARE USED TO OBTAIN THE VALUES FOR EACH MODEL. () U = 80%, (b) U = 60%, AND (c) U = 40%

Buffer Cell Loss Rate Frame Error Rate
Size (cells) || Real | M/G/o | F-ARIMA | DAR(]) Real | M/G/oo | F-ARIMA | DAR(1)
100 1.7E-2 1.1E-2 8.5E-3 1.9E-2 1.1E-1 6.7E-2 4.8E-2 1.2E-1
500 1.6E-2 | 9.6E-3 1.6E-3 1.7E-2 9.1E-2 5.0E-2 7.3E-3 9.9E-2

1000 1.5E-2 | 8.7E-3 4.6E-4 1.5E-2 || 79E-2 | 4.3E-2 1.9E-3 8.0E-2
1500 14E-2 | 8.0E-3 1.7E-4 1.3E-2 || 7.0E-2 | 3.8E-2 6.7E-4 6.7E-2

2000 1.3E-2 | 7.6E-3 7.9E-5 12E-2 | 6.3E-2 | 3.5E-2 2.9E-4 5.7E-2
2500 1.2E-2 | 7.2E-3 4.1E-5 1.1E-2 || 5.8E-2 | 3.2E-2 1.5E-4 4.9E-2
(@)
Buffer Cell Loss Rate Frame Error Rate
Size (cells) | Real | M/G/oo [ F-ARIMA [ DAR(I) || Real | M/G/oo | F-ARIMA | DAR(I)
100 1.2E-3 | 6.6E-4 7.6E-4 5.6E-4 || 6.2E-3 | 2.9E-3 3.4E-3 4.7E-3
500 1.1E-3 | 4.9E4 7.1E-5 48E4 || 51E-3 | 1.7E-3 24E-4 3.4E-3
1000 1.0E-3 | 4.0E4 8.9E-6 40E4 (| 44E-3 | 1.3E-3 2.3E-5 2.5E-3
1500 1.0E-3 | 34E4 1.6E-6 34E+4 [ 3.9E-3 | 1.1E-3 4.2E-6 2.0E-3
2000 9.6E4 | 3.0E-4 5.2E-7 3.0E4 [l 3.6E-3 | 9.1E4 6.0E-7 1.6E-3
2500 9.1E-4 | 2.7TEH4 2.0E-7 2.6E-4 || 3.3E-3 | 7.9E4 2.0E-7 1.3E-3
(b)
Buffer Cell Loss Rate Frame Error Rate
Size (cells) | Real | M/G/oc | F-ARIMA | DAR(1) || Real [ M/G/oo [ F-ARIMA | DAR(])
10 1.3E-5 | 1.2E-5 5.3E-5 0 64E-5 | 7.1E-5 1.8E4 0
20 1.3E-5 | 1.1E-5 4.9E-5 0 5.8E-5 | 5.7E-5 1.7E-4 0
30 1.3E-5| 1.1E-5 4.7TE-5 0 5.8E-5 | 4.0E-5 1.6E-4 0
40 1.3E-5 | 1.1E-5 4.4E-5 0 5.8E-5 | 3.8E-5 1.5E-4 0
50 1.2E-5 | 1.0E-5 4.2E-5 0 5.8E-5 | 3.7E-5 1.4E-4 0
60 1.2E-5 | 1.0E-5 3.9E-5 0 5.8E-5 | 3.6E-5 1.3E-4 0
70 1.2E-5 | 9.7E-6 3.7E-5 0 5.3E-5 | 3.5E-5 1.2E4 0
80 1.2E-5 | 9.5E-6 3.5E-5 0 5.3E-5 | 3.5E-5 1.1E4 0
90 1.2E-5 | 9.2E-6 3.3E-5 0 5.3E-5 | 3.5E-5 1.1E4 0
100 1.2E-5 | 9.0E-6 3.1E-5 0 5.3E-5 | 3.5E-5 9.9E-5 0
200 1.1E-5 | 7.2E-6 1.9E-5 0 4.7E-5 | 2.3E-5 5.4E-5 0
300 9.9E-6 | 6.2E-6 1.1E-5 0 41E-5 | 1.9E-5 3.0E-5 0
400 8.9E-6 | 5.6E-6 7.4E-6 0 41E-5 | 1.7E-5 1.9E-5 0
500 79E-6 | 5.0E-6 4.8E-6 0 3.5E-5 | 1.4E-5 1.3E-5 0
600 6.8E-6 | 4.5E-6 2.9E-6 0 3.5E-5 | 1.3E-5 8.8E-6 0
700 5.8E-6 | 4.2E-6 1.7E-6 0 29E-5 [ 1.1E-5 5.4E-6 0
800 4.8E-6 | 3.9E-6 1.0E-6 0 29E-5 [ 9.8E-6 2.8E-6 0
900 3.8E-6 | 3.6E-6 7.8E-7 0 2.3E-5 | 8.8E-6 8.0E-7 0
1000 2.8E-6 | 34E-6 6.7TE-7 0 2.3E-5 | 7.9E-6 6.0E-7 0
(©

in the credits (the portion that contains the names of actocsated resource allocation problem, which will be the topic of
acknowledgment, etc.). a future study. For simplicity, we assume that the frames’
In the above simulations, the simulation time was signiboundaries of multiplexed streams are aligned in time, so
icantly reduced by conducting the discrete-event simulatiohe time axis is slotted in frame periods. This specialization
at the frame level (rather than the cell level). The algorithmllows us to significantly reduce the simulation time using the
that was used for these single-stream simulations is shof@fiowing optimization.
in Fig. 6. It exploits the fact that only the frame sizes, the Consider a simulation experiment in whidhvideo streams
service rate, the maximum buffer size, and the queue lendihdicated by their frame-size traces) are to be multiplexed.
at the beginning and end of each time slot are relevant to thesume that théV streams have the same number of frames,

computation of the CLR and FER measures. n. Let {X](k),j =1,2,---,n} be the frame-size sequence for
) the kth streamk =1,2,---, N. To obtain the CLR and FER
B. Multiplexed Streams for the multiplexedN streams, we first compute aggregate

In this subsection, we investigate the multiplexing perfotrace{X;,j = 1,2, ---,n} from the pointwise sum of the/
mance under the three models for the purpose of contrastinaces, i.e.X; = ¥, X](k), forj =1,.--,n. For atime slot
their different behaviors. It is not our objective here to provid@.e., a frame period) in which buffer overflow cannot occur,
a thorough evaluation of the multiplexing gain and the asstite aggregate trace can be used to update the buffer occupancy
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QjAé length of the queue at the beginning of the jth slot EXAMPLE OF THE F;L'?:\)EIEEOI,YIN THE SIMULATION
C = service rate (cells/slot) TiME AS THE CLR DecrReAses(N = 10)
B 4 buffer size Buffer Size (cells) | Average CLR | Simulation Time (seconds)
X; = jth value in the trace (e.g., frame size) ;gg gggig gggg
Initialize 300 2.8E-5 362.72
Q1:=0 400 2.7E-5 328.50
lost_cells := 0 : . .
for j =1 to last_frame do 3500 7.8E-6 108.13
if X; < C then /* underflow */ 4000 6.1E-6 95.47
Qj+1 = max{Q; + X; — C, 0} 4500 44E-6 88.39
else 5000 2.7E-6 63.52
T::Qj-i-Xj—C—B
ifT >0 /* cell losses */
lost_cells := lost_cells + T provides the closest performance to the real performance. The
Qj+1:=B F-ARIMA model is overly sensitive to the buffer size (i.e.,
else . the CLR and FER in the F-ARIMA model decrease with
enc?]i;‘:l =T+B an increase in the buffer size faster than the corresponding
end if trend seen by real video sources). Such an overly sensitive
end for behavior (which we have seen before in the caseVot=

1) can lead to overallocation or underallocation of buffer
and bandwidth resources. While the DAR(1) model shows
acceptable sensitivity to buffer size, it is shown to overestimate
both CLR and FER.
at the end_ of th_at slot. This_updati_ng is done on a fram_e-by--rhe results forN = 10 are provided for the purpose of
frame basis, using an algorithm similar to the one in Fig. 8ontrasting the three models. But since the performance under
For time slots during which buffer overflow is possible (basega| video streams is not available in this case, one cannot
on some sufficient conditions that will be introduced shortly},ake definite conclusions about the relative accuracy of the
the individual traces are used to simulate the performance @fee models (forN = 10, we could not use the previous
a cell-by-cell basis. _ ~ trick to obtain ten streams from a single empirical trace since
Fortunately, buffer overflow occurs only in a small fractiofne extracted streams start to show some nonnegligible cross
of the total number of simulated time slots. L&Y denote cqrrelations). However, one can make few observations by

the queue length at the beginning of tia slot. It can be contrasting the behavior wheN = 10 to the previous case
shown that either of the following two conditions guaranteggnen ;¥ = 5. As in the case ofV = 5, the performance

Fig. 6. Algorithm for approximating the loss rate for a single trace.

no buffer overflow during thejth slot: for the F-ARIMA model whenN = 10 is more sensitive to
1) (X; £0O)n(Q; < B-N); or the buffer size than the other two models. Both DAR(1) and
2) (X;>C)n(X; -C<B-Q;)N(Q; <B-N). M/G/oo models display comparable sensitivities to buffer size.

With this optimization, the simulation time for computingHowever, the CLR performance for the DAR(1) model is more
the queueing performance fof multiplexed streams i€©(n+ than an order of magnitude higher than that of the M{G/
anW N), wheren is the trace lengthy is the fraction of slots model. Given the performance for the real streams when
for which neither of the above conditions is satisfied, &id 5 and that for the DAR(1) model whe = 10, one could
is the average number of cells per frame per stream duriagnclude that the DAR(1) is probably overestimating the CLR
buffer overflow. Typically,oW < 1, making the complexity performance (realistically, we should expect an appreciable
much less tharO(Nn). reduction in the CLR when going fromy = 5 to NV = 10).

To give an idea of the efficiency of the above simulatio®f course, a conclusive judgment would require obtaining the
approach, Table IV gives an example of the simulation timgerformance for ten multiplexed real streams.
for ten multiplexed M/G#o streams with different buffer sizes
(the results in the table were based on a single run). As the
buffer size increases, both CLR and FER decrease, resulting in
shorter simulation times. In this example, a reduction of almostIn this paper, we investigated a new approach for character-
an order of magnitude in the CLR resulted in an equivalei#ing VBR video streams based on MAs/processes. These
reduction in the simulation time. processes enjoy several attractive features that make them a

The multiplexing performance for the three models is showable approach for modeling various types of network traffic.
in Table V for N = 5 and N = 10 at a load ofU = 80%. Compelling statistical evidence from four different video traces
Each value in the table representsauerageover N streams suggests that the ACF of a VBR sequence is better captured by
and over five independent simulations. In the cas&of 5, ¢~ ?V* than bye?* (Markovian) ore=?le* (LRD). While
we have also provided results for real streams, with the fildarkovian models capture the short-term correlations and
streams being derived from the original empirical trace afkRD models capture the long-term correlations, the fitv*
described before. It can be observed that the MéGhodel is shown to sufficiently capture the empirical correlations at all

VII. CONCLUDING REMARKS
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TABLE V
AVERAGE CELL Loss AND FRAME ERROR RATES FORN' MULTIPLEXED STREAMS (U = 80%) (&) N = 5 anD N = 10
Buffer Cell Loss Rate Frame Error Rate
Size (cells) | Real | M/G/oo | F-ARIMA [ DAR(1) || Real | M/G/oo [ F-ARIMA [ DAR(T)
200 2.6E4 | 2.3E+4 2.1E-4 82E-4 || 6.2E-3 | 3.7E-3 4.8E-3 1.3E-2
400 2.4E-4 | 2.0E-4 6.9E-5 7.7E-4 || 5.7E-3 | 2.9E-3 1.5E~-3 1.1E-2
600 2.3E4 | 1.8E+4 2.6E-5 72E-4 || 5.3E-3 | 2.5E-3 5.0E-4 9.6E-3
800 22E4 | 1.7E4 1.1E-5 6.8E—4 | 5.1E-3 | 2.2E-3 2.2E4 9.3E-3
@)
Buffer Cell Loss Rate Frame Error Rate

Size (cells) || M/G/oo | F-ARIMA [ DAR(1) || M/G/oo | F-ARIMA | DAR(I)

100 7.4E-6 2.1E-5 1.4E-4 2.2E+4 7.9E+4 3.0E-3

200 6.3E-6 1.3E-5 1.3E-4 1.7E-4 4.6E4 2.8E-3

300 5.6E-6 7.8E-6 1.3E-4 1.5E-4 3.0E+4 2.6E-3

400 4.8E-6 4.7E-6 1.2E4 1.2E4 1.8E+4 2.4E-3

(b)

lags. To display such a correlation structure, an MéGdased For any two functionsf,g: R — R, we have
model for video was developed, which exhibits short-range

dependence (although not Markovian). The P0|ssor? marglnalgOv Z FOX), Zg(Xi)

of the M/Gho process were transformed into ones with a more i =

appropriate distribution (due to Garrett and Willinger [9]).

_ _ _ 2
The impact of the transformation is shown to be negligible. = EWIE[f(X)g(X)] + (E[V(V Dl = (BB )

With the performance of a real stream taken as a reference, - E[f(X)]Elg(X)]
we examined the queueing performance under the M/G/ = E[v]cov [f(X), g(X)] + var (") E[f(X)]E[g(X)]
model and contrasted it to the performances for two popular (34)

video models: the F-ARIMA model (LRD) and the DAR(1) . . .
. . . . provided the expectations exist. O
(Markovian). Our simulation results indicate that the M#&/ ) X
. . . Consider the M/Gk input procesdb,,,n = 0,1,---}. For
model consistently provides acceptable predictions of “%%chn —0.1.--- we note that
actual cell loss and frame error rates at various traffic loads o
and buffer sizes. In contrast, the performance for the F- by, Ibéo) —i—bﬁ{’) (35)
ARIMA model is overly sensitive to the buffer size, to the 0 (0) (@) . o
extent that it sometimes underestimates the real pen‘ormal\{\géere the rv'sb,” and b" describe the contrlbut_lon_s to the
. .number of customers in the system at the beginning of slot
by several orders of magnitude. The DAR(1) model, whil I
howi table trend to ch in buffer si e + 1) from those initially present (at = 0) and from
s. owing acceptable rep _O_C anggs_ln utter size, someti new arrivals, respectively. Under the enforced operational
gives unacceptably optimistic predictions (e.g., the case Ofagsumptions we readily have
single stream with 40% traffic intensity), and at other times

essimistic predictions (case of multiplexed streams). An ad- L
p p ( p ) b =33 1o, >0 — ]

ditional advantage of the M/& model over the F-ARIMA is p st (36)
that onlyO(n) computations are needed to generate a synthetic

trace of sizex, compared t@(n?) for an F-ARIMA trace. Our and

future work will focus on using the M/G6t model in on-line bo

admission control and dynamic resource allocation. Toward b =" 1fogi>n]. (37)
this end, we have been working on analytically obtaining the =1

gueueing performance for multiplexed MAS/ sources and The stationary version{b*,n = 0,1,---} is obtained by
using such performance to compute the effective bandwidttissuming that 1) the ré, is a Poisson rv with parameter
Results of this research will be reported in future work.  AE[c]; 2) the rv's{og ;,j = 1,2,---} are i.i.d. rv's distributed
according to the pmf (4) of the forward recurrence time
APPENDIX associated withy.
PROOF OF EQUATION (6) Fix n =0,1,---andk = 1,2,---. By independence, we

The derivation of (6) is based on the following Well-knowrhave
result on random sums of i.i.d. rv's. I'(k) 2 cov by bror]

Lemma 1: Let {X, X,,,n = 1,2,---} be a sequence d&- B ©) 10 (@) 7@
value i.i.d. rv’'s which are independent of &fvalued rvy. ooV [b” ’b"+’“} +eov [b” ’b"+’“] (38)
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First, we consider the teroov [bgf),bﬂk]. Under the enforced since b, is a Poisson rv with meanE[s]. Combining (41)

independence assumptions

ntk &

cov lb;‘l), Z Zl[asji>n+k—s]] =0

s=n+1 =1
so that

cov [bﬁf% bgla_,)_k}

n &
= cov [bgla),zz 1o, ; >n+k— s]]

s=1i=1

n &
cov lbﬁ;l), Z Z o, i >n+k— s]]

s=1i=1

(by independenge

n n &r

Z ZCOV Z 1o, ; >n—7],

r=1 s=1 j=1

s
. 21[057i>n+k—3]]

i=1

Z 1o, ;>n — 5],

j=1

and (42), we have

(39) cov [V, Uil = AE[O|P[6>n+ k| + A  Plo>r+k—1]

r=1

:)\E[a]iP[é}:n—i-k-i-T]

r=1

+)\ZP[0>7’+k—1]

r=1
=AY Plozn+k+r]+A) Plo>r+k
r=1 r=1
r=1

A Plo— byt 2] @)

The proof of (6) is now completed.
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. 21[057i>ﬂ+k—8]]

= ZE[gs]E[l [Us,l >n— S]
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+ 5 (Bl - D] - BIE) Plosi>n—s] O
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where the last equality follows by Lemma 1. Making use off4]
the fact that the i.i.d. rv'g[&,+1,n = 0,1,---} are Poisson

rv's with parameter\, we see that (40) reduces to 5]

n 6]
cov M08 =AS Plosr k-1 @)
r=1
7

Next, we considerov [(b1”,5{"),]. Again, making use of

Lemma 1 under the enforced independence assumptions,

conclude that [9]
oV [bglO)’ bﬂk} [10]

bo bo
= cov 21[0077‘,>7’L],21[00J >7’L+/€] [11]

i=1 j=1
= E[bo]P[6 >n + k] [12]

+ (Elbo(bo — 1)] — (E[bo])*) Pl6 > n]

-Pl6>n +k] (13]

= \E[0]P[6 > n + k] (42)
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